2017 ALGEBRA 2 2018 WEEKLY ASSIGNMENT SHEET FOR MAY. 14 TO MAY. 18 FOURTH QUARTER (Q4). WEEK 7 OF 9. (Q4-7)

INSTRUCTOR: MR. ANDRUS. ROOM: 514

CONTINUING OBJECTIVES:

- 1. Improve organization skills.
- 2. Move from memorizing and repeating to applying and thinking.
- 3. Read, write and interpret math statements.
- 4. Use mistakes as opportunities to learn.
- 5. Expand successes and build up weaknesses. Continue to move forward.

SCCCR STANDARDS:

Sequences and Series. Identify geometric and arithmetic sequences. Find common difference and common ratios

- 1. A2.FBF.1*, A2.FBF.2*, A2.FIF.3*, A2.FIF.9*, A2.FLQE.2*, A2.FLQE.5*
- 2. Review.

MONDAY (IF YOU DID NOT ATTEND LAST FRIDAY'S CLASS.) $\rightarrow \rightarrow$

- 1. After this week, what % of Q4 is complete? What % of S2 grade is complete?
- 2. Read & study section 9-3. Record 3 key words. Starting on p. 648 do 1 13, 22 24.
- 3. Read & study worksheet Q4-7 Monday. Record 3 key words.
- 4. Complete all problems on worksheet Q4-7 Monday.
- Re-try District Written Exam problems from problem solving q4-6, without notes. Then use notes to correct and update the problems.

Check your last week's assignment sheet for Friday's work. Complete this work to prepare for this week's assessment.

TUESDAY (IF YOU DID NOT ATTEND CLASS ON MONDAY) $\rightarrow \rightarrow$

- 1. Grade/UPDATE/discuss Monday's work.
- 2. Read & Study section 9-4. Record 3 key words. Starting on p. 659 do 1 15.
- 3. Read & study worksheet Q4-7 Tuesday. Record 3 key words.
- 4. Complete all problems on worksheet Q4-7 Tuesday.
- 5. Re-try District Written Exam problems from problem solving q4-6, without notes. Then use notes to correct and update the problems.

Please complete Monday's assignments. Use them to prepare for the assessment.

WEDNESDAY (IF YOU DID NOT ATTEND CLASS ON TUESDAY) $\rightarrow \rightarrow$

- 1. Grade/UPDATE/discuss Tuesday's work.
- 2. Complete DISTRICT WRITTEN EXAM.
- 3. Complete test review sheet.
- 4. Journal: Explain how to determine if a sequence is arithmetic. Hint: first page of worksheet q4-7 Monday.

Please complete Tuesday's assignments and use them to prepare for the assessment.

THURSDAY (IF YOU DID NOT ATTEND CLASS ON WEDNESDAY)→

- 1. Grade/UPDATE/discuss Wednesday's work. Review.
- 2. Complete Weekly Test in Aleks.
- 3. You may use all note pages on this assessment.
- If you did not attend class yesterday, your first take will count as your new test problems. Your 2nd take will count as your test score. Additional takes will be updates.

Please complete Wednesday's assignments and use them to prepare for the weekly assessment.

FRIDAY (IF YOU DID NOT ATTEND CLASS ON THURSDAY) $\rightarrow \rightarrow$

- 1. Update yesterday's test in Aleks.
- 2. Problem solving Q4-7. Turn in before leaving class.

Please complete the weekly assessment today.

Arithmetic Sequences and Series

To determine whether a sequence is an arithmetic sequence, check for a common difference. d. $d \neq 0$. Find the first differences of the terms.

 $-7, -3, 1, 5, 9, \dots$ Differences: -3 - (-7) = 41 - (-3) = 45 - 1 = 49 - 5 = 4

The common difference is 4. The sequence is arithmetic.

2, 6, 18, 54, 162, ... Differences: 6 - 2 = 418 - 6 = 1254 - 18 = 36162 - 54 = 108

There is no common difference. The sequence is not arithmetic.

If you know the first term of an arithmetic sequence, a_1 , and the common difference, d, then you can find the *n*th term, a_n , using the following rule.

$$a_n = a_1 + (n-1) d$$

Find the 15th term of the arithmetic sequence 10, 4, -2, -8, -14, ...

Find the common difference, d. Step 1

$$d = 4 - 10 = -6$$

Identify the first term, a₁. Step 2

$$a_1 = 10$$

Step 3 Use the formula with n = 15 to find the 15th term, a_{15} .

$$a_n = a_1 + (n-1)d$$

Write the rule.

$$a_{15} = a_1 + (15 - 1)d$$

Substitute n = 15.

$$a_{15} = 10 + (14)(-6)$$

Substitute $a_1 = 10$ and d = -6.

$$a_{15} = -74$$

Simplify.

The 15th term of the sequence is -74.

Determine whether each sequence could be arithmetic. If so, find the common difference.

Find the 10th term of each arithmetic sequence.

9-3

Arithmetic Sequences and Series (continued)

If you know any two terms in an arithmetic sequence, you can find any other term in the sequence.

- Find the common difference by using the two terms and the formula for the nth term.
- Then use the formula for the nth term to find the first term and the nth term.

Find the 12th term of the arithmetic sequence with $a_3 = 33$ and $a_9 = 117$.

Step 1 Use the known terms and the formula for the *n*th term to find the common difference.

Since $a_n = a_9$, n = 9 in the formula. $a_9 = a_3 + (9 - 3)d$ $a_9 = a_3 + 6d$ Simplify.

Substitute $a_9 = 117$ and $a_3 = 33$.

Solve for d.

Since $a_n = a_9$, n = 9 in the formula.

Replace 1 with 3 since $a_1 = a_3$.

Step 2 Use one of the known terms and the common difference, d = 14, to find a_1 . Use $a_3 = 33$ and the formula for the *n*th term.

 $a_n = a_1 + (n-1)d$ Write the formula. $a_3 = a_1 + (3-1)(14)$ Let $a_n = a_3$, so n = 3 and d = 14. $a_3 = a_1 + (2)(14)$ Simplify. $33 = a_1 + 28$ Substitute $a_3 = 33$. $5 = a_1$ Solve for a_1 .

Step 3 Use $a_1 = 5$, d = 14, and n = 12 in the formula for the *n*th term to find a_{12} .

 $a_n = a_1 + (n-1)d$ Write the formula. $a_{12} = 5 + (12-1)(14)$ Substitute $a_1 = 5$, d = 14, and n = 12. $a_{12} = 5 + (11)(14)$ Simplify. $a_{12} = 159$ Solve for a_{12} .

Find the 10th term of the arithmetic sequence with $a_4 = 34$ and $a_6 = 52$.

6. Find <i>a</i> .	 Find a₁. 	

Let $a_n = a_6$ and $a_1 = a_4$. Let $a_n = a_4$.

 $a_6 = a_4 + (6 - 4) d$ $a_4 = a_1 + (4 - 1) ($ ____)

Find a₁₀.

1. Yes; d = 12

No

Yes; d = −8

4. 8; 5; 10; $a_{10} = 77$

5. -3; 7; 10; $a_{10} = -20$

6. 52 = 34 + 2d; d = 9

7. 9; $34 = a_1 + 27$; $a_1 = 7$

8. 10; $a_{10} = a_1 + (10 - 1)d$; $a_{10} = 7 + 81$; $a_{10} = 88$

Geometric Sequences and Series

To determine whether a sequence is a geometric sequence, check for a common ratio, $r(r \neq 1)$.

Find the ratios of pairs of terms to decide whether the sequence is geometric.

Ratios:
$$\frac{6}{-2} = -3$$

$$\frac{-18}{6} = -3$$

$$\frac{54}{-18} = -3$$

$$\frac{-162}{54} = -3$$

The common ratio is -3. The sequence is geometric.

If you know the first term of a geometric sequence, a_1 , and the common ratio, r, then you can find the nth term, a_n , using the following rule.

$$a_n = a_1 r^{n-1}$$

Find the 10th term of the geometric sequence 3, 12, 48, 192, 768, ...

Find the common ratio, r.

$$r = \frac{12}{3} = 4$$

Identify the first term, a₁.

$$a_1 = 3$$

Use the formula with r = 3 to find the 10th term, a_{10} . Step 3

$$a_n = a_1 r^{n-1}$$

Write the rule.

$$a_{10} = a_1 r^{10-1}$$

Substitute n = 10.

$$a_{10} = 3 (4)^9$$

Substitute $a_1 = 3$ and r = 4.

$$a_{10} = 3 (262,144) = 786,432$$

Simplify.

The 10th term of the sequence is 786,432.

Determine whether each sequence could be geometric. If so, find the common ratio.

Find the 8th term of each geometric sequence.

Worksheet Q4-7 Tuesday cont.

Geometric Sequences and Series (continued)

If you know any two terms in a geometric sequence, you can find any other term in the sequence.

- Find the common ratio by using the two terms and the formula for the nth term.
- Then use the formula for the nth term to find the first term and the nth term.

Find the 8th term of the geometric sequence with $a_4 = 162$ and $a_6 = 1458$.

Step 1 Use the known terms and the formula for the nth term to find the common ratio.

 $a_n = a_1 r^{n-1}$

Write the formula.

 $a_6 = a_4 r^{6-4}$

Let $a_n = a_6$ and $a_1 = a_4$.

 $1458 = 162r^2$

Simplify and substitute $a_6 = 1458$ and $a_4 = 162$.

 $\pm 3 = r$

Solve for r.

Step 2 Use one of the known terms and the common ratio, $r = \pm 3$, to find a_1 . Use $a_4 =$ 162 and the formula for the nth term.

 $a_n = a_1 r^{n-1}$

Write the formula.

 $a_4 = a_1(3)^{4-1}$

OR
$$a_4 = a_1 (-3)^{4-1}$$

 $a_n = a_4$, so n = 4; r = 3 or -3

 $162 = 27a_1$

OR $162 = -27a_1$

Simplify and substitute a₄ = 162.

 $6 = a_1$

OR $-6 = a_1$ Solve for a₁.

Use both cases in the formula for the nth term to find a₈. Step 3

When r = 3, $a_1 = 6$.

When
$$r = -3$$
, $a_1 = -6$.

 $a_n = a_1 r^{n-1}$

$$a_n = a_1 r^{n-1}$$

$$a_n = 6(3)^{n-1}$$

$$a_n = -6(-3)^{n-1}$$

$$a_8 = 6(3)^{8-1}$$

$$a_n = -6(-3)^n$$

 $a_8 = -6(-3)^{8-1}$

$$a_8 = 6(3)^7$$

$$a_8 = -6(-3)^7$$

$$a_8 = 13,122$$

$$a_8 = -6(-3)$$

 $a_8 = 13.122$

In both cases, the 8th term is 13, 122.

Find the 7th term of the geometric sequence with $a_4 = 80$ and $a_5 = 160$.

Find r.

Let $a_n = a_5$ and $a_1 = a_4$.

Let
$$a_n = a_4$$
.

$$a_n = a_1 r^{n-1}$$

$$a_n = a_1 I^{n-1}$$

$$a_5 = a_4 r^{5-4}$$

 $a_n = a_1 r^{n-1}$

$$a_4 = a_1 ()^{4-1}$$

1. Yes;
$$r = -2$$

2. Yes;
$$r = 3$$

4.
$$-2$$
; -7 ; 8; $a_8 = 896$

5. 3; 8; 8;
$$a_8 = 17,496$$

6.
$$160 = 80(r)^{1}$$
; $r = 2$

7. 2;
$$80 = a_1(2^3)$$
; $a_1 = 10$

8. 7;
$$a_7 = 10(2^6)$$
; $a_7 = 640$